
LESSONS 7 & 8
Now that your students have completed Lessons 1-6, they should have a solid grasp of the core
coding concepts we’ve covered and of Hopscotch as a tool. These lessons are designed to give
students an opportunity to practice their skills and apply them in new ways. You can determine
the right amount of structure based on your class’s experience and needs. Younger kids might
need more concrete assignments, whereas older students may relish the opportunity to make
something from their imagination.

An important idea to explore in creative coding is identifying which problems you can solve with
a computer (a computable problem) and which are better solved by a human. For example, a
video game can easily be solved by a computer, but a mind-reading game cannot.

Here are some suggestions of how you can guide your class; do what is best for your
goals:

Go deeper with games from previous lessons:
- Refine one of the games you made in lessons 1-6
- Design and make your own game, using pieces from these lessons
- Form a game dev team and make a big game together, assigning roles to each team
 member
- Have a game showcase with another class

Link the coding experience to other subjects:
- Write a review of someone else’s game
- Make a commercial for your game: video, website, magazine ad
- Make a video tutorial for how to use a certain block, or define a term
- Write a persuasive essay about two different ways to do something, and which one is
 better
- Record your project as an animated gif (make a meme)

Explore Hopscotch in greater detail:
- Do the tutorial videos in the app
- Find a game you like in the Community and remix it
- Design a game as a team and implement it, using the Forum to ask for help

LESSONS 7 & 8 77

 RUBRIC

RUBRIC 78

Inspired by http://www.edutopia.org/pdfs/blogs/edutopia-yokana-maker-rubric.pdf

Student is
aware of the
goal of the
program,
returns to the
task when
asked, has
some ideas
when
prompted,
asks for help
when stuck

Student
understands
the goal of
the program,
has their own
ideas, rarely
goes off-task,
and attempts
to solve
problems first
before asking
for help

Program
shows some
understanding
of core
concepts and
skills

Program
reflects
understanding
of concepts
and skills

Unsatisfactory

Program does
not work, or
has major
flaws that
prevent its
intended use

Program
mostly works,
and has only
minor flaws

Program
works in the
way the
student
intended

Program
shows
synthesis of
new and old
concepts and
skills

Program lacks
understanding
of core
concepts and
skills

Student
cannot
describe how
their code
works

Student can
mostly
describe how
their code
works

Student can
describe how
their code
works and can
make changes
that have
desired
effects

Student can
describe how
their code
works and
how they
wrote it, and
help others
debug their
code
Student
embraces the
goal of the
program and
chooses to try
out new ideas
and multiple
solutions,
even when
they are
challenging

Student is not
aware of the
goal of the
program, is
frequently off-
task, does not
offer their own
ideas, and
gives up when
it is difficult

Program is
functional and
refined, with
extra features
that add
functionality
or improve
upon the
original
design

Execution

Content

Reflection

Habits
of
mind

Competent Proficient Distinguished

http://www.edutopia.org/pdfs/blogs/edutopia-yokana-maker-rubric.pdf

GLOSSARY FOR YOUNGER STUDENTS
Ability: Code that can be reused

Algorithm: A recipe for a program

Coding: Telling computers what to do

Concurrence: Two things happening at the same time

Conditional: Statements of the form “IF (something is true), THEN (do an action)”

Debugging: Finding mistakes in your code and fixing them

Event: When something happens

Iteration: Having ideas and making mistakes, over and over

Logic: The process of making decisions

Loop: Code that repeats

Operator: A mathematical symbol that makes an equation

Program: A set of instructions a computer can understand

Programmer: A person who writes programs

Programming Language: A set of rules or blocks that can be used to write any program

Random: When there’s no pattern

Range: The highest and lowest number random can choose between

Rule: Instructions that tell your computer what to do (the command) and when to do it (the
event)

Sequence: The order in which instructions are given to the computer

Object: A character or text with its own rules

Value/Variable: A holder for a number

GLOSSARY 79

GLOSSARY FOR OLDER STUDENTS
Ability/Function/Procedure/Subroutine: A saved set of blocks. What we call abilities in
Hopscotch are known as functions or subroutines in other programming languages. Easily
replicable routines are a key concept in computer programming, and allow you to scale your
code and create complex programs

Algorithm: Algorithms are at the heart of computer science; they are the recipes that
computers follow to solve problems

Bug: An error that a programmer has made in his or her code

Coding: Writing the rules of behavior for a computer to follow automatically; programming

Concurrency: Two or more things happening at the same time, or triggered by the same event

Conditional: Statements of the form “IF (something is true), THEN (do an action)”

Debugging: Finding mistakes in your code (bugs) and fixing them

Event: A trigger that the computer recognizes and causes it to do some action. In Hopscotch,
events include "When the iPad is tapped" or "When the play button is tapped"

Iteration: The repetition of a process

Logic: The science of the formal processes of thinking and reasoning

Loop: A repeating set of instructions

Operator: A mathematical symbol that produces a value

Program: A set of instructions a computer can understand

Programmer: A person who writes programs

Programming Language: A set of words, rules, blocks or instructions that can be used to write
a program

Random: Any number or item among a set. The lack of a pattern among items in a set

Range: The highest and lowest number random can choose between

Rule: Rules tell your object what to do and when to do it. When you make an ability and pair it
with an event, you create a rule

Sequence: An ordered list of things (instructions, blocks, numbers, etc) which can be triggered
by an event or repeated

Object: A character or text with its own rules on screen

Value: A holder for a number. Also known as a variable

GLOSSARY 80

REFERENCES
Wiggins, Grant P., and Jay McTighe. Understanding by design. Ascd, 2005.
https://books.google.com/books?id=hL9nBwAAQBAJ&dq=understanding+by+design+apple
+unit

https://computationalthinkingcourse.withgoogle.com

http://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

http://www.corestandards.org/Math/Practice/

http://www.nextgenscience.org/sites/ngss/files/Appendix%20F%20%20Science%20and
%20Engineering%20Practices%20in%20the%20NGSS%20-%20FINAL%20060513.pdf

http://www.edutopia.org/pdfs/blogs/edutopia-yokana-maker-rubric.pdf

REFERENCES 81

ACKNOWLEDGMENTS

ACKNOWLEDGMENTS 82

Huge thanks to Dr. Emily Thomforde, David Dulberger, Jesse Beutow, Thomas Abend, Ashley
Gavin, Miranda Gohh, Elizabeth McDonald, Jessica Wertheim, Redwood City Public Library, Taft
Community School, and all of the educators who have provided ideas for and feedback on this
curriculum.

Most importantly, thanks to Hopscotchers everywhere for making amazing things and reminding
us that learning should be fun. This curriculum is inspired by and dedicated to you <3.

