
LESSON 5
SUBWAY SURFERS

An action game that has multiple possible
implementations.

TIME

BIG IDEA

SKILL FOCUS

KEY VOCABULARY

TRANSFER GOALS

MATERIALS

LESSON 5 – SUBWAY SURFERS 57

45-60 minutes (+15 minutes of
optional, free code time)

There is often more than one solution to a
problem, and some solutions are better than
others. There may be another way!

Pair programming: A technique in which two
people work together on one device

– 1 iPad per student, or 1 iPad per 2
students, for pair programming
–Video available on YouTube:
http://hop.sc/SubwaySurferVideo
– Complete project available:
http://hop.sc/subwayproject

• Collaboration
• CCSS.MATH.PRACTICE.MP3 Construct

viable arguments and critique the
reasoning of others

• NGSS Practice 7 Engaging in argument
from evidence

• NGSS Practice 8 Obtaining, evaluating,
and communicating information

1. Students will try pair programming.
2. Students will use appropriate vocabulary

to communicate with their partner.
3. Students will compromise and agree on

solutions.
4. Students will formulate strategies for

dealing with disagreement, and compare
solutions based on implementing and
evaluating, without taking it personally.

http://hop.sc/SubwaySurferVideo

TEACHER BRIEF
Subway Surfers is an arcade-style game where the player controls a character running in
three lanes, dodging trains and other obstacles by swiping to change lanes. We will build a
stripped-down version of this game, focusing on the interaction between the hero and the
trains. In extra time, students may be inspired to add the other elements of Subway Surfers,
like collecting coins and bonuses, and jumping and/or rolling.

This lesson is a great chance to introduce pair programming, a technique in which two
people work together on one device.

This lesson is an opportunity to work together, using relevant vocabulary, explaining ideas
and comparing possible solutions. Assign pairs in whatever way you prefer. Where there is an
odd student, create a group of three. The key to working together is understanding that
there may be more than one solution to a problem, and the team decides together which
solution is best based on how well it works—not on whose idea it was!

The crux of this lesson is deriving the formula for the train choosing one of three lanes to
appear in. Be sure to familiarize yourself with it in advance of teaching the class.

LESSON 5 – SUBWAY SURFERS 58

LESSON
0. Discussion (5 minutes)
In Pair Programming, two programmers take turns coding. The driver holds the iPad and
does the coding, and the navigator watches for mistakes, helps come up with solutions, and
keeps the pair on task. Every few minutes, they switch roles. Both jobs are equally important!
This is especially helpful when making complex games, because there are lots of details to
attend to, and an extra pair of eyes can help spot errors before they become bugs. In
professional environments, this is often considered a best-practice (and we do it frequently at
Hopscotch).

What things would you need to keep in mind while pair programming? Ask your students to
make a list of things that they should and should not do while pair programming (e.g. they
should ask questions about why the programmer chose a certain block; they should not call
each other names.)

1. Draw lanes (S) (10 minutes)
Show your students a completed version of the game. The first step is to create the three
colored tracks that run down the middle of the screen. See if your students can draw three
random-color lanes by reusing as much code as possible (abilities are helpful for this!). One
solution is to make one drawing object, and repeat setting the position and drawing the line.
Another possibility is to make three separate drawing objects that each use the same “Draw
Lane” ability.

1.1 Add an invisible text object to the top middle of the screen

0. Discussion (5 minutes)
In Pair Programming, two programmers take turns coding. The driver holds the iPad and
does the coding, and the navigator watches for mistakes, helps come up with solutions, and
keeps the pair on task. Every few minutes, they switch roles. Both jobs are equally important!
This is especially helpful when making complex games, because there are lots of details to
attend to, and an extra pair of eyes can help spot errors before they become bugs. In
professional environments, this is often considered a best-practice (and we do it frequently at
Hopscotch).

What things would you need to keep in mind while pair programming? Ask your students to
make a list of things that they should and should not do while pair programming (e.g. they
should ask questions about why the programmer chose a certain block; they should not call
each other names.)

1. Draw lanes (S) (10 minutes)
Show your students a completed version of the game. The first step is to create the three
colored tracks that run down the middle of the screen. See if your students can draw three
random-color lanes by reusing as much code as possible (abilities are helpful for this!). One
solution is to make one drawing object, and repeat setting the position and drawing the line.
Another possibility is to make three separate drawing objects that each use the same “Draw
Lane” ability.

1.1 Add an invisible text object to the top middle of the screen

Remember that a
shortcut for an
invisible object is to
make a text object,
then tap “X” on the
upper left corner
when it asks you to
set text.

How would your
code change if you
put the text object
at the bottom of
the screen? It
would have to
move by a positive
amount.

LESSON 5 – SUBWAY SURFERS 59

LESSON
1.2 Add code to text object: Draw lane

1.3 Make it a custom block

1.4 Add two more text objects at appropriate places, give them the “Draw Lane”
block

2. Control hero (ELCV) (10 minutes)
As your students saw when playing the sample game, in Subway Surfers the player controls
the hero by swiping right and left on the iPad, jumping across lanes to avoid the oncoming
objects. In students’ versions, they will make the player swipe the hero, rather than the iPad.

1.2 Add code to text object: Draw lane

1.3 Make it a custom block

1.4 Add two more text objects at appropriate places, give them the “Draw Lane”
block

2. Control hero (ELCV) (10 minutes)
As your students saw when playing the sample game, in Subway Surfers the player controls
the hero by swiping right and left on the iPad, jumping across lanes to avoid the oncoming
objects. In students’ versions, they will make the player swipe the hero, rather than the iPad.

LESSON 5 – SUBWAY SURFERS 60

LESSON
The rules for animating and controlling the hero are a chance to practice the concepts of
events and loops learned in previous lessons. You can discuss the general requirements of
this action as a class and then give your students the chance to try coding these rules on their
own. The sample code below is just one possible solution.

Check in to compare the results and make sure everyone’s is working and, if your students
have not brought it up, then raise the issue that nothing is stopping the player from swiping
their hero out of the lanes and “off the board”. In order to establish boundaries, we can
introduce logic that only allows the character to move within a certain zone.

In our game, the character can move in one case but not another; we will tell the computer
to check and see if a condition is true before moving on to execute the command. We do
this with a conditional that checks the character's position on the X axis.

As a class, decide the range of X positions for which the character may be moved right and
left, respectively. Derive the inequalities from these numbers (e.g. If character’s X position is
greater than [some number] you cannot move it further to the right). Code these rules as a
class, in pairs, or as individuals. The numbers in the sample code are a possible solution.

2.1 Add hero object
2.2 Add new code to hero: animate hero object to run forever

2.3 Add new code to hero: Change X by 150 when swiped right

The rules for animating and controlling the hero are a chance to practice the concepts of
events and loops learned in previous lessons. You can discuss the general requirements of
this action as a class and then give your students the chance to try coding these rules on their
own. The sample code below is just one possible solution.

Check in to compare the results and make sure everyone’s is working and, if your students
have not brought it up, then raise the issue that nothing is stopping the player from swiping
their hero out of the lanes and “off the board”. In order to establish boundaries, we can
introduce logic that only allows the character to move within a certain zone.

In our game, the character can move in one case but not another; we will tell the computer
to check and see if a condition is true before moving on to execute the command. We do
this with a conditional that checks the character's position on the X axis.

As a class, decide the range of X positions for which the character may be moved right and
left, respectively. Derive the inequalities from these numbers (e.g. If character’s X position is
greater than [some number] you cannot move it further to the right). Code these rules as a
class, in pairs, or as individuals. The numbers in the sample code are a possible solution.

2.1 Add hero object
2.2 Add new code to hero: animate hero object to run forever

2.3 Add new code to hero: Change X by 150 when swiped right

LESSON 5 – SUBWAY SURFERS 61

LESSON
2.4 Add new code to hero: Change X by -150 when swiped left

2.5 Edit swipe code to check for hero’s X position

3. Add trains (SV) (10 minutes)
The most challenging aspect of this game is setting the trains to appear as challenging
obstacles. Students should start, in pairs, by discussing how to program one train to move
along one lane, starting at the top. If they forget the height of the screen, they can use the
built-in value, “iPad’s height”.

Once they have a train running in one lane, they will need to program it to randomly appear
in different lanes. This is accomplished by choosing a range of X-positions in which it may
appear, using one of these formulas for the X position:

2.4 Add new code to hero: Change X by -150 when swiped left

2.5 Edit swipe code to check for hero’s X position

3. Add trains (SV) (10 minutes)
The most challenging aspect of this game is setting the trains to appear as challenging
obstacles. Students should start, in pairs, by discussing how to program one train to move
along one lane, starting at the top. If they forget the height of the screen, they can use the
built-in value, “iPad’s height”.

Once they have a train running in one lane, they will need to program it to randomly appear
in different lanes. This is accomplished by choosing a range of X-positions in which it may
appear, using one of these formulas for the X position:

LESSON 5 – SUBWAY SURFERS 62

Note: If you’re on
an iPhone, you will
need to adjust the
width of the lanes
to fit the smaller
screen.

LESSON
If these formulas are confusing, check out the code below. For older students, work out this
formula in pairs. Younger students may need to be shown or led to discover the formula. In
either case, test the formula out with the possible values on paper before trying it in
Hopscotch. Have students code it when they think they have it right, then evaluate the
formula by testing its effect in the game.

You can also ask the class how they would change the code if their lanes were wider. (change
the X-position by 150 to accommodate lane width, make 200 lower). How would they change
it if they had more than 3 lanes? (Change second number range to number of lanes, make
200 lower) For older students: Consider that these changes affect more than just one
number; can you think of a general-purpose equation using variables for “NumberOfLanes”
and “LaneWidth”?

3.1 Add train object and make it bigger

3.2 Add new code to train: Make it run along one track

3.3 Edit code to choose random lane

If these formulas are confusing, check out the code below. For older students, work out this
formula in pairs. Younger students may need to be shown or led to discover the formula. In
either case, test the formula out with the possible values on paper before trying it in
Hopscotch. Have students code it when they think they have it right, then evaluate the
formula by testing its effect in the game.

You can also ask the class how they would change the code if their lanes were wider. (change
the X-position by 150 to accommodate lane width, make 200 lower). How would they change
it if they had more than 3 lanes? (Change second number range to number of lanes, make
200 lower) For older students: Consider that these changes affect more than just one
number; can you think of a general-purpose equation using variables for “NumberOfLanes”
and “LaneWidth”?

3.1 Add train object and make it bigger

3.2 Add new code to train: Make it run along one track

3.3 Edit code to choose random lane

Or, you can
Change Y by (-1 * iPad’s
Height).

Name train object “Train”.

LESSON 5 – SUBWAY SURFERS 63

LESSON
3.4 Adjust speed

4. Collisions (ES) (5 minutes)
Ending the game is an opportunity for creativity. How do students want to indicate to the
player that a collision has occurred? If you want, for example, to grow and spin at the same
time, that’s concurrency, and should be implemented with two different rules with the same
event. Ask students to come up with a good indication that a collision has occured, code it,
and show it to a partner. The partner can help debug if necessary.

4.1 Add new code to hero: Disappear when you collide with a train

3.4 Adjust speed

4. Collisions (ES) (5 minutes)
Ending the game is an opportunity for creativity. How do students want to indicate to the
player that a collision has occurred? If you want, for example, to grow and spin at the same
time, that’s concurrency, and should be implemented with two different rules with the same
event. Ask students to come up with a good indication that a collision has occured, code it,
and show it to a partner. The partner can help debug if necessary.

4.1 Add new code to hero: Disappear when you collide with a train

LESSON 5 – SUBWAY SURFERS 64

LESSON
4.2 Edit hero’s code: Animate collision

5. Keep score (ELV) (5 minutes)
As students might recall from earlier lessons, we use values to store numbers that may be
changed. To create a score, students should introduce a text object that will keep track of
and display the score. In this case, though, the score shouldn’t keep increasing forever; it
should stop when the hero collides with a train. You can ask students to discuss a solution to
this problem. One possible way to implement the score is to change the event that triggers
this rule, so instead of happening forever, it only happens when the hero is visible on the
screen (e.g. has not collided with the train).

5.1 Add a score object

5.2 Add new code to score: Make it count up by 1 forever and display score

5.3 Change the event and delete the loop

5.4 Publish your game!

4.2 Edit hero’s code: Animate collision

5. Keep score (ELV) (5 minutes)
As students might recall from earlier lessons, we use values to store numbers that may be
changed. To create a score, students should introduce a text object that will keep track of
and display the score. In this case, though, the score shouldn’t keep increasing forever; it
should stop when the hero collides with a train. You can ask students to discuss a solution to
this problem. One possible way to implement the score is to change the event that triggers
this rule, so instead of happening forever, it only happens when the hero is visible on the
screen (e.g. has not collided with the train).

5.1 Add a score object

5.2 Add new code to score: Make it count up by 1 forever and display score

5.3 Change the event and delete the loop

5.4 Publish your game!

The score is increasing as fast
as the computer can go. Is
that too fast? Add a wait
block to slow it down. Find a
good value for wait.

The reason you can delete
the loop is that this event is
already repeating!

LESSON 5 – SUBWAY SURFERS 65

Name score object “Score”.

DIFFERENTIATION

REFLECTION

LESSON 5 – SUBWAY SURFERS 66

(15 minutes, optional)
In Subway Surfers, you have the option of jumping over or rolling under barriers, in addition
to the option of avoiding them. Can you add this functionality to your game? Devise a
strategy in pairs, either on paper, or in code. Share your ideas with the class and see how
they are similar. Can we come up with a better solution by combining our ideas?

• Add hurdle object
• Make train’s behavior a function, then give hurdle the same train rule
• Give hero a swipe down rule to roll - make “rolling value”
• When hero bumps hurdle, check if rolling
• Can you jump over the hurdles by swiping up?
• Can you make the trains speed up as the game goes along?

• What is pair programming? Why is it useful?
• Can you see a pattern in the order we use to build a game? Why did we choose that

order? Is it the best, or can you think of improvements?
• Why are some values a different color than others? (Some are built-in and you change

them with dedicated blocks, others are the ones you made and you have to change
them by using set value or increase value.)

(5 minutes, optional)

