
LESSON 4
FLAPPY BIRD

An exercise in reverse-engineering, both of a known
game and of the physical rules of the real world.

TIME

BIG IDEA

SKILL FOCUS

KEY VOCABULARY

TRANSFER GOALS

MATERIALS

LESSON 4 – FLAPPY BIRD 46

45-60 minutes (+15 minutes of optional, free code
time)

Coding means telling computers what to do, in
a language they can understand. Computers
speak numbers!

Physics Engine: The common set of rules that the
objects in the game follow to make the world feel
“real”
Reverse Engineering: Examining an existing
program or machine and figuring out how it works
so that we can reproduce it

– 1 iPad or iPhone per student, or 1 device per 2
students, for pair programming– Video available on
YouTube:
http://hop.sc/FlappyBirdVideo
– Complete project available:
http://hop.sc/flappyproject

• Reverse Engineering
• CCSS.MATH.PRACTICE.MP4 Model with

mathematics.
• NGSS Practice 1 Defining problems
• NGSS Practice 2 Developing and using

models

1. Students will understand that math is an
important part of coding.

2. Students will anticipate how changing
code will change behavior.

3. Students will be able to test different
settings and choose the appropriate one.

4. Students will begin to recognize rules in
the world, both those that are
constructed (like games) or obligatory
(like physics).

http://hop.sc/FlappyBirdVideo

TEACHER BRIEF
Math is the language scientists use to express the rules of the physical world. From counting
tree rings to E=mc2, we use numbers and equations to be specific about how real things
move and change. When programmers design virtual worlds, we use math to tell the
computer how that virtual world should work. In this lesson, we will make Flappy Bird, and in
the process students will create a simple physics engine, using values to create an
environment that simulates, or models, the physics of the real world. For those who aren’t
“math people”, don’t fret! Most programming math is elementary-level.

Students will also explore the concept of reverse engineering, a process of examining an
existing program or machine and figuring out how it works in order to reproduce it. Students
should draw from their familiarity with the game or watch it in action before building, and
then work backwards to determine the physical elements necessary for the game.

We also introduce a new concept, functions (or abilities, as we call them in Hopscotch) in
this lesson.

LESSON 4 – FLAPPY BIRD 47

LESSON
0. Discussion (5 minutes)
Any game that models real-world physics, including falling and gravity, skidding, projectiles,
even water, uses what we call a Physics Engine. This is the common set of rules that the
objects in the game follow to make the world feel “real”. Making a good physics engine
takes a lot of trial and error, because the numbers need to be just right to feel real.

What are the physical elements of Flappy Bird? Watch a game of Flappy Bird as a class, and
make a list of the objects in the game and the rules that they are following. Write this list on
the board and use it as a guide to making the game. The order we give here is just an
efficient example, and your class may be better served by a different order:

1. Fall all the time + introduction of physics engine (LV) (10 minutes)
We recommend that you discuss and build this first rule together as a class. The core part of
your Flappy Bird physics engine is gravity. The bird should fall when it is left alone. But, it
doesn’t just move down the screen at a constant rate: it speeds up as it falls, just like objects
fall in real life! We implement this by making the bird move by a value, called “Bird UpDown”
in the below code, instead of by a number. That way, we can change the value over time,
and the amount the bird moves will update respectively. This will give the appearance of a
bird falling at an increasing speed.

Writing this rule is a good opportunity to use a function to organize the code for the physics
engine. A function is a way to save code so you can reuse it somewhere else. This is a super
useful trick that will allow your students to create complex games and programs because
they won’t have to write the same code over and over. There is a saying in programming—
“Don’t repeat yourself”—which means you should only write something once. With
functions, that’s possible.

Functions also make your code easier to understand. If anyone wants to look at the code
later, they will understand that it, taken together, builds an engine to make the bird fall.

Ask your students why are we using values to change the speed. What is the difference
between the “Set Value” and “Increase Value” blocks? How is it like the difference between
“Set Angle” and “Turn”? Why are we using a function to group our code? Walk your
students through adding the function and then writing the code to make the bird fall at an
increasing speed forever. Or, you can have students try using psuedocode to write the rules
on their own and then share their ideas with the class. Check out the sample code to see one
possible implementation.

1.1 Add bird object

0. Discussion (5 minutes)
Any game that models real-world physics, including falling and gravity, skidding, projectiles,
even water, uses what we call a Physics Engine. This is the common set of rules that the
objects in the game follow to make the world feel “real”. Making a good physics engine
takes a lot of trial and error, because the numbers need to be just right to feel real.

What are the physical elements of Flappy Bird? Watch a game of Flappy Bird as a class, and
make a list of the objects in the game and the rules that they are following. Write this list on
the board and use it as a guide to making the game. The order we give here is just an
efficient example, and your class may be better served by a different order:

1. Fall all the time + introduction of physics engine (LV) (10 minutes)
We recommend that you discuss and build this first rule together as a class. The core part of
your Flappy Bird physics engine is gravity. The bird should fall when it is left alone. But, it
doesn’t just move down the screen at a constant rate: it speeds up as it falls, just like objects
fall in real life! We implement this by making the bird move by a value, called “Bird UpDown”
in the below code, instead of by a number. That way, we can change the value over time,
and the amount the bird moves will update respectively. This will give the appearance of a
bird falling at an increasing speed.

Writing this rule is a good opportunity to use a function to organize the code for the physics
engine. A function is a way to save code so you can reuse it somewhere else. This is a super
useful trick that will allow your students to create complex games and programs because
they won’t have to write the same code over and over. There is a saying in programming—
“Don’t repeat yourself”—which means you should only write something once. With
functions, that’s possible.

Functions also make your code easier to understand. If anyone wants to look at the code
later, they will understand that it, taken together, builds an engine to make the bird fall.

Ask your students why are we using values to change the speed. What is the difference
between the “Set Value” and “Increase Value” blocks? How is it like the difference between
“Set Angle” and “Turn”? Why are we using a function to group our code? Walk your
students through adding the function and then writing the code to make the bird fall at an
increasing speed forever. Or, you can have students try using psuedocode to write the rules
on their own and then share their ideas with the class. Check out the sample code to see one
possible implementation.

1.1 Add bird object

LESSON 4 – FLAPPY BIRD 48

• First, the bird falls to the ground if left alone.
• Second, the bird flaps when you tap the iPad (thus staying afloat).
• Third, obstacles enter on the right of the screen and travel across to the left.
• Fourth, the game ends when the bird collides with any of the obstacles or the

ground.

Set bird object to the far left of
the screen.

LESSON
1.2 Add code to bird: create “Fall” function

1.3 Make bird change Y by [blank] forever

1.4 Create a “Bird Up-down” value and plug it into the “Change Y by” block

1.2 Add code to bird: create “Fall” function

1.3 Make bird change Y by [blank] forever

1.4 Create a “Bird Up-down” value and plug it into the “Change Y by” block

Notice that we don’t enter a
value in the “Change Y by”
block.

This is the crucial
moment where you
make the bird’s
movement change
over time by using
a value instead of a
static number. Tap
the bubble in
“Change Y by” to
access your values.

LESSON 4 – FLAPPY BIRD 49

Press New Block to add a new
function. Name it something
descriptive, like “Fall”. All of
the code you want to reuse or
group as the function should go
inside the block. Note that
whenever you change a
function in one place, it
automatically makes those
changes wherever else it is
used!

LESSON
1.5 Make “Bird Up-down” decrease forever

1.6 Edit falling code: Add a little rotation and some speed

2. Flap when iPad is tapped (ELS) (10 minutes)
As a class, discuss the second component of the physics engine. At this point, the bird just
falls nonstop. We need to add the second component of the physics engine that will allow
the player to make the bird flap (and stay afloat) by tapping on the iPad. When the bird flaps,
it should move up the screen a little, but then keep falling once you stop tapping. You can
ask your class to hypothesize how they might make this happen before attempting to code
the rule on their own.

1.5 Make “Bird Up-down” decrease forever

1.6 Edit falling code: Add a little rotation and some speed

2. Flap when iPad is tapped (ELS) (10 minutes)
As a class, discuss the second component of the physics engine. At this point, the bird just
falls nonstop. We need to add the second component of the physics engine that will allow
the player to make the bird flap (and stay afloat) by tapping on the iPad. When the bird flaps,
it should move up the screen a little, but then keep falling once you stop tapping. You can
ask your class to hypothesize how they might make this happen before attempting to code
the rule on their own.

LESSON 4 – FLAPPY BIRD 50

Note: we found changing “Bird
Up-down” by -4 to work well.
Encourage students to
experiment with this number.

LESSON
We do this by changing the value that controls the bird’s position, “Bird Up-down”, to a
positive number when the bird is tapped. This is the second element of our physics engine.
The number we choose here dictates the feel of the game.

You can have students implement this code on their own, in groups, or as a class. Have
students experiment with different numbers here and in the falling and turning rules. Fiddle
and test until the combination feels right—the bird falls at a believable rate and accelerates
up accordingly.

If there is extra time after students have finished their physics engine, add animation to the
bird’s flapping rule.

2.1 Add new code: Set “Bird Up-down” value to a positive number when iPad is
tapped

3. Add obstacles (LS) (10 minutes)
Students next get to reverse engineer the pipes’ movement! Reverse engineering is a useful
practice in programming in which you examine an existing program or machine and figure
out how it works so that you can reproduce it. Using a completed Flappy Bird game as an
example, ask your students to discuss how they might make the pipes travel across the
screen (while the player attempts to guide the bird through them). Students may remember
from Geometry Dash that one obstacle stands in for many and that they travel backward to
make the hero look like it’s moving forward. But, in this game, the Y position of the pipes is
different every time, so you have to use randomness.

Usually we give a lot of freedom in character and emoji choice, but in the case of the
obstacles, it’s important to follow along exactly, at least in your first version of the game. The
code we offer enables the pipes to travel together with a big enough gap for the bird to fly
through. This can be changed later once students understand why it works.

Have your students try to code the pipe sequence independently, then compare with their
neighbor. Did everyone decide on the same rules in the same order? Did anyone get
identical behavior with different rules? The sequence below is one of many possible
solutions.

We do this by changing the value that controls the bird’s position, “Bird Up-down”, to a
positive number when the bird is tapped. This is the second element of our physics engine.
The number we choose here dictates the feel of the game.

You can have students implement this code on their own, in groups, or as a class. Have
students experiment with different numbers here and in the falling and turning rules. Fiddle
and test until the combination feels right—the bird falls at a believable rate and accelerates
up accordingly.

If there is extra time after students have finished their physics engine, add animation to the
bird’s flapping rule.

2.1 Add new code: Set “Bird Up-down” value to a positive number when iPad is
tapped

3. Add obstacles (LS) (10 minutes)
Students next get to reverse engineer the pipes’ movement! Reverse engineering is a useful
practice in programming in which you examine an existing program or machine and figure
out how it works so that you can reproduce it. Using a completed Flappy Bird game as an
example, ask your students to discuss how they might make the pipes travel across the
screen (while the player attempts to guide the bird through them). Students may remember
from Geometry Dash that one obstacle stands in for many and that they travel backward to
make the hero look like it’s moving forward. But, in this game, the Y position of the pipes is
different every time, so you have to use randomness.

Usually we give a lot of freedom in character and emoji choice, but in the case of the
obstacles, it’s important to follow along exactly, at least in your first version of the game. The
code we offer enables the pipes to travel together with a big enough gap for the bird to fly
through. This can be changed later once students understand why it works.

Have your students try to code the pipe sequence independently, then compare with their
neighbor. Did everyone decide on the same rules in the same order? Did anyone get
identical behavior with different rules? The sequence below is one of many possible
solutions.

LESSON 4 – FLAPPY BIRD 51

LESSON

LESSON

3.1 Add obstacle object

3.2 Add new code to obstacle: Turn and grow

3.3 Add new code to obstacle: Reverse engineer obstacle movement

4. End when you hit an obstacle (EV) (5 minutes)
The game ends when the bird collides with the obstacle (pipes). By this point, some students
should be able to design a rule that makes the game end on their own. If not, they can work
in pairs to build a win state. The simplest implementation is to make both the bird and the
pipes disappear upon collision. An advanced programmer could animate the bird to turn
toward the ground and fall before disappearing and get the pipes to remain visible but stop
moving.

3.1 Add obstacle object

3.2 Add new code to obstacle: Turn and grow

3.3 Add new code to obstacle: Reverse engineer obstacle movement

4. End when you hit an obstacle (EV) (5 minutes)
The game ends when the bird collides with the obstacle (pipes). By this point, some students
should be able to design a rule that makes the game end on their own. If not, they can work
in pairs to build a win state. The simplest implementation is to make both the bird and the
pipes disappear upon collision. An advanced programmer could animate the bird to turn
toward the ground and fall before disappearing and get the pipes to remain visible but stop
moving.

LESSON 4 – FLAPPY BIRD 52

To add the obstacle pipes, type
in four green emoji squares,
then 5 spaces, then another
four green emoji squares.
Depending on your device, you
might need to adjust this. Set
the obstacle pipes to the far
right and rename the object
“Obstacle”.

LESSON
4.1 Add new code to bird and obstacle object

5. Keep score (ELV) (15 minutes) (optional)
If there’s extra time, see if students can keep track of the score. The following is a clever way
to keep score, and to automatically stop the score from increasing further when the game is
over.

It depends on the pipes either stopping or going invisible when they collide with the bird. An
object will both display the current score and detect when the score should be increased! It
relies on a mechanism in which the player earns points only when the pipes pass the bird
without colliding. Conveniently, as soon as the pipes get past the bird, they bump into the
Score text, so that event can trigger the score increase. Students might remember how to
make a text object display a value from Quiz. If not, guide them to a good solution.

5.1 Add a score object

4.1 Add new code to bird and obstacle object

5. Keep score (ELV) (15 minutes) (optional)
If there’s extra time, see if students can keep track of the score. The following is a clever way
to keep score, and to automatically stop the score from increasing further when the game is
over.

It depends on the pipes either stopping or going invisible when they collide with the bird. An
object will both display the current score and detect when the score should be increased! It
relies on a mechanism in which the player earns points only when the pipes pass the bird
without colliding. Conveniently, as soon as the pipes get past the bird, they bump into the
Score text, so that event can trigger the score increase. Students might remember how to
make a text object display a value from Quiz. If not, guide them to a good solution.

5.1 Add a score object

LESSON 4 – FLAPPY BIRD 53

Name score object “Score” and
place it in the bottom left corner
of the screen, even further left
than the bird.

LESSON
5.2 Add new code: Make score object show score value forever

5.3 Add new code to the score or the obstacle: Increase score

5.4 Publish your game! What’s your high score?

5.2 Add new code: Make score object show score value forever

5.3 Add new code to the score or the obstacle: Increase score

5.4 Publish your game! What’s your high score?

LESSON 4 – FLAPPY BIRD 54

You will need to create a new
value, “Score”, for this step.

Differentiation (15 minutes, optional)

Reflection (5 minutes)

DIFFERENTIATION

REFLECTION

LESSON 4 – FLAPPY BIRD 55

• Add a better background
• Add more birds
• Change the speed of the pipes
• Add bonuses or other objects

• Compare Geometry Dash and Flappy Bird.
⁃ What elements do they have in common?
⁃ How are they different?
⁃ How could you use some ideas from one to improve the other?

• What is a physics engine?
• What other games have them?
• Should game physics always be like real-world physics?

⁃ Why or why not?

