
LESSON 2 
GEOMETRY DASH

A single-button jumper that includes moving
obstacles, drawing a background, and animation



TIME

BIG IDEA

MATERIALS

SKILL FOCUS

TRANSFER GOALS

KEY VOCABULARY

45-60 minutes (+15 minutes of
optional, free code time)

Computers can only do what you SAY
because they are not smart enough to
figure out what you MEAN. Be specific!

– Debugging
– Make sense of problems and persevere in
solving (CCSS.MATH.PRACTICE.MP1)
– Look for and make use of structure
(CCSS.MATH.PRACTICE.MP7)
– Designing solutions (NGSS Practice 6)

– 1 computer per student, or 1 device per 2
students, for pair programming
– Video available on YouTube:
http://hop.sc/GeometryDashVideo
– Complete project available:
http://hop.sc/geometrydashproject

Bug: A mistake in your code
Debugging: Finding mistakes and fixing them
Concurrency: Two things that happen at the
same time
Random: A surprise
Range: The highest and lowest number for
random to choose between

1. Students will become familiar with editing
rules
2. Students will practice testing their programs
to find bugs.
3. Students will practice fixing bugs and
verifying that they are fixed.
4. Students will abstract a problem to design a
solution.
5. Students will develop confidence and
persistence.

LESSON 2 – GEOMETRY DASH 24

http://hop.sc/GeometryDashVideo
http://hop.sc/GeometryDashVideo


TEACHER BRIEF

As your students learned in Lesson 1, computers are really good at carrying out orders 
quickly and accurately. They are not good at thinking about what things mean or making 
decisions for themselves. That means that we have to be very careful when we are giving 
computers instructions, because they will do exactly what we tell them to do (even if it makes 
no sense). An inevitable part of programming is introducing mistakes, or bugs, in your code 
and then having to fix them (debugging). 

This second lesson focuses on debugging as a rewarding exercise, and teaches kids to 
become comfortable making and working through mistakes. Students will get used to testing 
their programs and editing rules, which will occupy lots of their time for the next four weeks. 
Finding bugs can be frustrating for even the most seasoned engineer, but the process is 
ultimately very rewarding and a unique opportunity to learn and practice perseverance—one 
of the most transferable skills gained through coding. Celebrate bug fixes! 

Debugging is made easier by making incremental changes to your code—write one thing, 
test it, and then write the next. If you code lots of things at once and then figure out it’s not 
working, it’s harder to track down which of your changes caused a mistake. 

LESSON 2 – GEOMETRY DASH 25



LESSON
0. Discussion: Debugging

1. Control the hero (ES) (10 minutes)

In Geometry Dash, the player controls a little square that flips and jumps over obstacles. 

Because the jumping and flipping animations happen at the same time, we say they are 
concurrent. The way to program concurrence in Hopscotch is to make two rules with the 
same event. That way, they are triggered at the same time. 

Say what you think your program is supposed to do, see what it actually does, and then
describe the difference in your own words.
Look at your code for ambiguities, or places where your blocks don’t say exactly what you
want to happen, when you want it to happen.
Make a checklist of common mistakes: Did you repeat forever? Are the numbers you
plugged in correct? Did you use the correct blocks for what you intended? Move Forward vs
Change X By? Set Speed vs Set Angle, etc. Does your rule belong to the right object? 
Try to map out the logic of your project. Then see if you’ve written the right code to create
that logic.
Take a break when you get overwhelmed. We often need distance to see what we’ve done
in its entirety.

In this lesson, students will create their own version of Geometry Dash. While building the
game, they will inevitably make mistakes and create bugs. This lesson is equally as much
about the process of finding and fixing bugs as it is about making a fun game. You can ask your
students to think about this task and imagine themselves as bug hunters.

As programmers, we frequently tell our computers to do something other than what we 
intended. We call the resulting mistakes bugs, or errors in a program introduced by the 
person writing it. The process of finding and fixing your mistakes is called debugging. One 
of the most important lessons in coding is remembering that your bugs are not caused by the 
computer—they’re caused by the programmer. And it’s totally expected that all 
programmers will write bugs at different points in the development process. 

When real-world programmers are in the process of writing code, the rule of thumb is that it 
takes 10% of their time to write the first draft, and the other 90% of their time to debug it. 
There are engineers whose whole jobs are to debug other people’s code! 

It may be worthwhile at this point to discuss debugging with your class. What are some 
useful strategies to consider while debugging? The following are just some examples:

What should bug hunters look for? Why is this an important job? When else in our lives have 
we had to hunt for and solve problems?

LESSON 2 – GEOMETRY DASH 26



LESSON
Get students to deconstruct the two steps of jumping (move up, then move down). Does this 
up and down movement occur along the X or Y axis? Then, ask your students to add their 
hero object (the square emoji) and tell it to turn and jump when they tap their iPad.

1.3 Add code to hero to jump

1.2 Use the cross-arrow icon to position the Square near the bottom left corner of the
screen

1.1 Add hero object to Scene 1

LESSON 2 – GEOMETRY DASH 27

Scroll down on the Object's
panel on the left side of the
screen to find Square. It is
located under the tab "Shapes."

Use the three-line icon at the
end of the Square to drag it
inside "Scene 1."

If you're having trouble moving
the objects on stage, refer to
this link:
https://help.gethopscotch.com/
article/219-how-to-move-
objects-in-a-scene-on-
hopscotch-web 



Drawing the background is a skill that you can apply to any game. Because drawing is just 
like any other code, you have to choose an object to be in charge of drawing. It is customary 
to make this object invisible, so you don’t see the thing itself, only the picture it draws. For 
this reason, it doesn’t really matter which object you choose.

In Hopscotch, we draw with a block called “Draw a Trail” that sets the color and width of the 
line, then executes the code inside – typically “Move Forward” – as if the object were 
dragging a marker behind it. It will make a dot if it just moves by 1. To color in the whole 
screen, make a huge dot (width 3000). To make a thick line, you have to set the position to 
where you want it to start, and then move along the desired path.

This is another opportunity for debugging. Have the students make a prediction about the 
following questions and then test out changing their code. What happens… if you don’t put 
anything inside the drawing block? …if you forget to set the width? …if you set the color to 
white? …if you don’t set the position before you start? 

Then, have students attempt drawing their backgrounds on their own. They can change the 
artist’s speed to draw the background faster.

LESSON

2. Background (S) [10 minutes]

2.1 Add drawing object (empty text object) to Scene 1

1.4 Add new code to hero to turn while jumping

LESSON 2 – GEOMETRY DASH 28

What would happen if you 
picked a non-symmetrical hero? 
How much would you have to 
turn it so it landed on its feet? 
What happens when you 
choose +180 instead?

Leave the text object empty.
You can tap on the green check
when it prompts you to enter
text. Empty text object itself
would appear as invisible on
the screen initially, so it's
perfect for drawing.



LESSON

LESSON 2 – GEOMETRY DASH 29

Change the order of an object’s 
rules by dragging a rule up or 
down in the editor.

The default speed is 400.
9999 is as high as you ever
need to go; that speed is 
indistinguishable from 
999999999...

Set the invisibility to 100 so you
can’t see the painter.

Press the Preview button to play
your game and see the
background drawn out. If your
hero Square is not sitting right
above the blue platform, you
can move it so that it looks
right.

3. Obstacles (LS) [10 minutes]

2.2 Add code to drawing object

2.3 Edit drawing object’s code to draw faster

In games like Flappy Bird and Geometry Dash, it feels like the hero is moving forward 
through a stationary world but actually, the hero is stationary and the world is moving 
backward. Have you ever sat in a stationary car and another car next to you backs up – 
doesn’t it feel, for just a moment, like you’re moving forward? In this game, the hero is the 
car you’re in, and the obstacles are the things moving backwards.

Take some time to talk about the movement of the obstacles from one edge of the screen 
across to the other edge. See if you can come up with the sequence of obstacles’ movement 
rules as a class.



LESSON

LESSON 2 – GEOMETRY DASH 30

After students agree on the correct code, ask them to try implementing it. Then, bring the
class together again and decide as a class at what point the obstacle should be visible and
invisible. Discuss why this feels so much more natural (It’s because our brains are good at
imagining that an object that moves out of our field of view is probably still in motion even
though we can’t see it).

What if we want to make it look like there are many obstacles but only use one object? This is 
another great design trick. See if your students can identify the technique to make this 
possible – putting the code inside a loop.

Give the students a few minutes to play their game, and then bring the class together again. 
Ask for suggestions to make the game more fun and challenging. Like with Crossy Road in 
Lesson 1, it is boring (and easy!) because it’s the same every time! Games are challenging 
(and fun!) when there is an element of unpredictability. If you make the obstacle wait for a 
random amount of time in between passes, the game becomes more fun. 

Debugging opportunity: What is the appropriate range for the random wait time? Try out 
some different combinations until you settle on one you like.

3.2 Edit obstacle’s code to move it across the screen

3.1 Add triangle shape object for obstacle
Rename the triangle 

“Obstacle”.



LESSON
 

LESSON 2 – GEOMETRY DASH 31

When moving code into the 
repeat block, make sure not to 
change the order. Students will 
probably make a mistake here 
—a good opportunity for 
debugging!

You can change the object into 
an explosion, make it spin 
around, or drop off the screen 
like Mario. Turning invisible is 
necessary, because it stops the 
game from being playable.

4. Collisions events (ES) [10 minutes]

4.1 Add new collision rule to hero Square

3.5 Edit obstacle’s code to wait random (100,1000)

3.3 Edit obstacle’s code to make sequence repeat forever

As we learned in Lesson 1, when two objects bump into one another, it is called a collision. A 
collision is a type of , so we can decide what actions should happen when that event 
occurs. In Geometry Dash, when the hero collides with an obstacle, the game is over.

To designate “game over,” upon a collision the hero will explode and then disappear. In 
Hopscotch, when an object is invisible, it can no longer collide with anything, be tapped, or 
swiped. Spend some time testing this sequence and getting the timing right, then publish!

Add this Wait Milliseconds
block at the end of the code
from the previous step (after the
Set Invisibility block)



(5 minutes, optional)

(15 minutes, optional)

REFLECTION

DIFFERENTIATION

LESSON 2 – GEOMETRY DASH 32

•
•
•

•
•

•
•
• 

Draw a better background
Make the background colors random
Add more obstacles (two or three emojis in a row is a possibility, make movement into
an ability)
Set the obstacle size to random each time; pick a good range!
Print and laminate index cards with debugging strategies and have students check off
strategies as they go

What are computers good at? What are they bad at?
How does this compare to what humans are good and bad at?
Is drawing with a computer easier or harder than drawing with pencil and paper? Why?
If it is harder, why do we still do it?


